IPN Progress Report 42-162 August 15, 2005

A Tracking Performance Comparison of the
Conventional Data Transition Tracking
Loop (DTTL) with the Linear Data
Transition Tracking Loop
(LDTTL)

M. K. Simon'

The tracking (mean-square timing-error) performance of a linearized data-
transition tracking loop (LDTTL) is presented. The difference between the LDTTL
and the conventional DTTL is that the hard-limiter nonlinearity in the conven-
tional DTTL’s inphase arm is replaced by a linear device, as suggested by the
maximum a posteriori (MAP) open-loop estimate of symbol timing at low symbol
signal-to-noise ratio (SNR). The application of such a configuration is for error-
correction-coded communication systems where current coding technology suggests
symbol SNR values perhaps as low as —6 dB. The mean-square tracking jitter per-
formances of the LDTTL and the conventional DTTL are compared over a wide
range of symbol SNRs, with the former offering a noticeable advantage at low sym-
bol SNRs.

l. Introduction

The data-transition tracking loop (DTTL) [1,2] was introduced in the late 1960s as an efficient symbol
synchronization means for tracking a nonreturn-to-zero (NRZ) data signal received in additive white
Gaussian noise (AWGN). The scheme as originally proposed is an inphase-quadrature (I-Q) structure
where the I arm produces a signal representing the polarity of a data transition (i.e., a comparison of
hard (£1) decisions on two successive symbols) and the Q-arm output is a signal whose absolute value is
proportional to the timing error between the received signal epoch and the receiver’s estimate of it. The
result of the product of the I and ) signals is an error signal that is proportional to this timing error,
independent of the direction of the transition.

Years later, it was demonstrated that the closed-loop structure of the DTTL could be motivated by
the maximum a posteriori (MAP) open-loop estimate of symbol timing based on an observation of, say,
K symbols at high symbol signal-to-noise ratio (SNR), which at the time was in fact the SNR region of
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interest. As the design of communication systems became more and more power efficient through the use
of error-correction coding, a greater and greater demand was placed on the symbol synchronizer, which
now had to operate in a low symbol SNR region, with values based on today’s coding technology perhaps
as low as —6 dB. Since in this very low symbol SNR region the DTTL scheme as originally proposed
would no longer be the one motivated by MAP estimation theory, it is also likely that its tracking
capability would be seriously degraded in this region of operation. Furthermore, one would anticipate
that a modification of the DTTL structure in accordance with the low SNR MAP timing estimate wherein
the I-arm hard decisions are replaced by soft decisions (the hard limiter is replaced by a linear device)
should outperform the conventional DTTL.

This article examines such a modified DTTL, herein called the linear DTTL (LDTTL) and compares
its tracking performance as characterized by the mean-square timing error to that of the conventional
scheme, which has been well established in the past and is documented in [1,2]. Assuming an NRZ data
input, it is shown that, depending on the Q-arm window width, the LDTTL can achieve a gain of as
much as 4 dB in loop SNR at a symbol SNR of —6 dB relative to that of the conventional DTTL with a
hard-decision I-arm transition detector.

Il. Performance Analysis of the LDTTL

Consider the linear DTTL illustrated in Fig. 1.2 The input signal is assumed to be an NRZ signal,
i.e., a random pulse train with binary polarities, which is mathematically characterized as

s(t,e) = VS Z dpp (t —nT —¢) (1)

n=—oo

where S is the signal power, p(t) is a unit amplitude rectangular pulse of duration T seconds, {d,} is
an independent and identically distributed (i.i.d.) =1 sequence with d,, representing the polarity of
the nth data symbol, and ¢ is the unknown symbol timing epoch, which is assumed to be uniformly
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Fig. 1. The linear data-transition tracking loop.

2 The conventional (nonlinear) DTTL has the identical configuration except that a hard limiter is included in the I arm
prior to the transition detector.



distributed in the interval —T/2 < & < T'/2. The additive noise n(t) is a white Gaussian process with
single-sided power spectral density (p.s.d.) Ny watts/hertz. The local clock produces a timing reference
for the I and Q integrate-and-dump (I&D) filters that depends on its estimate € of e. Letting 0 < ¢ <1
denote the “window width” of the Q-arm I&D, then the outputs of these filters corresponding to the
kth symbol interval respectively are given by
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Since py and vy, are not independent, it is convenient, as was done in [1,2], to express them in terms of a

new set of variables:

where

with the following properties:
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Ny, M,, are mutually independent for all k,n

N}, M are mutually independent for all k, n

Ny, M, and Mj, N,, are mutually independent for all k,n

N{, N/} and My, M, are mutually independent for all k # n

Furthermore, all My, M}, Ny, N, and their sums are Gaussian random variables with zero mean and

variances
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Taking the difference of two successive soft decisions yr, and yr ;41 and multiplying the average of the
result by the quadrature I&D output ygr (delayed by (1 —§/2)T) gives the loop-error signal,

M, Ni) — M, N,
e(t) = ex = (bk + My, + Niyy) (ck + My + Ni) (C2k+1+ k1 + Net1) ,

k+1D)T+e<t<(k+2)T+¢
which is a piecewise constant (over intervals of T seconds) random process.
A. S-Curve Performance

The S-curve is by definition the statistical average of the error signal of Eq. (6) over the signal and
noise probability distributions, i.e.,

A
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Letting A = (¢ — €)/T denote the normalized timing error (—1/2 < A < 1/2), then for the assumed NRZ
signal of Eq. (1) the signal components of the I&D outputs become
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Substituting Eq. (8) into Eq. (7) and performing the necessary averaging over the noise and the data
symbols dy_s,di—1 and dj, give the desired result, namely,
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By comparison, the corresponding result to Eq. (9) for the DTTL is [1,2]
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where R, £ ST /Ny denotes the symbol SNR. Without belaboring the analysis, it is also straightforward
to show that for —(1/2) < A <0, g(A) = —g(—A), i.e., the S-curve is an odd function of the normalized
timing error.

Note from Eq. (9) that the normalized S-curve for the LDTTL is independent of SNR whereas that
for the conventional DTTL, Eq. (10), is highly dependent on SNR. Figure 2 is an illustration of Eq. (9)
for various values of window width €.

The slope of the normalized S-curve at the origin (A = 0) will be of interest in computing the mean-
square timing-jitter performance. Taking the derivative of Eq. (9) with respect to A and evaluating the
result at A = 0 gives for the LDTTL

dg(A) £

K, = 0 =K1 KyST? (1 -2 11
g d\ A=0 12 4 (11)
whereas the corresponding result for the DTTL, based on the derivative of Eq. (10), is
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which clearly degrades with decreasing R;.
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Fig. 2. Normalized S-curves for linear DTTL.



B. Noise Performance

The stochastic differential equation that characterizes the operation of the DTTL or the LDTTL is [1,2]
A= —KF(p)[g(\) + ()] (13)

where K is the total loop gain, F(p) is the transfer function of the loop filter with p denoting the Heaviside
operator, and ny(t) is the equivalent additive noise which characterizes the variation of the loop error
signal around its mean (the S-curve). Because of the 1&D and sample-and-hold operations in the I and
Q arms of the loops, n)(t) is a piecewise (over intervals of T' seconds) constant random process. In
particular,

na(t) =ex — Ensfent =er—g(\), (k+D)T+é<t<(k+2)T+2 (14)
with a covariance function that is piecewise linear between the sample values:
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= Epo{exehimy — 9> (N) = R(m,)\), m=0,%+1,42,-- (15)

As is customary in the analysis of loops of this type, for loop bandwidths that are small compared to
the reciprocal of the symbol time interval, ny(¢) can be approximated by a delta-correlated process with
equivalent flat (with respect to frequency) p.s.d.

N) = 2/ R, (1)dr = 2T
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Furthermore, for large loop SNR,? it is customary to consider only the value of the equivalent power
spectral density at A = 0, namely,

R(0,0) + 2 i R(m,0)| = 2T
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With a good deal of effort, the following results can be obtained from Eq. (6):

3 Note that this assumption does not require that the symbol SNR be large. Large loop SNR simply implies that the loop
operates in the so-called linear region, i.e., where the mean-squared value of the timing error is small and the probability
density function (p.d.f.) of the timing error is Gaussian distributed.
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Averaging Eqs. (18a) through (18c) over the noise and signal (data sequence) and then using Eq. (5), we
obtain after considerable evaluation the desired results, namely,
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The equivalent quantity for the conventional DTTL can be obtained from the results in [1,2] to be
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lll. Mean-Square Timing-Error Performance

The mean-square timing jitter 0/2\ of either the LDTTL or the DTTL is readily computed for a first-
order loop filter (F (p) = 1) and large loop SNR conditions. In particular, linearizing the S-curve to
g(A) = K A and defining the single-sided loop bandwidth by By, we obtain

N,B,,
K3
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where K is obtained from either Eq. (11) or Eq. (12) and N{ from either Eq. (20) or Eq. (21). Making
the appropriate substitutions in Eq. (22) gives the results
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where p £ S/NyBy, is the so-called phase-locked loop SNR. Figure 3 is a plot of the ratio of % |[LprrL
to 0’?\ |prTL in decibels as a function of R, in decibels with quadrature-arm normalized window width &
as a parameter. The numerical results clearly illustrate the performance advantage of the LDTTL at low
symbol SNRs. In fact, in the limit of sufficiently small SNR, the ratio of the variances approaches the
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which for ¢ — 0 (the theoretical value suggested by the MAP estimation of symbol synchronization
approach) becomes
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Fig. 3. The ratio of variances of the linear DTTL to the conventional DTTL versus
symbol SNR with window width as a parameter.
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The fact that this ratio approaches a finite limit is not surprising in view of a similar behavior for other
synchronization loops motived by the MAP estimation approach. For example, when comparing the
conventional Costas loop (motivated by the low SNR approximation to the MAP estimation of carrier
phase) to the polarity-type Costas loop (motivated by the high SNR approximation to the MAP estimation
of carrier phase), the ratio of variances of the phase error is given by [3]

0'3; |Conventiona1 . erf2 (\/ R ) (26)
0-35 |Polarity—Type 2Rs/ (1 + 2R5)
which for sufficiently small SNR becomes
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For large symbol SNR, the ratio of the variances in Eq. (23) approaches
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which for small window widths results in a small penalty for removing the I-arm hard limiter.

IV. Conclusion

The implementation of a closed-loop symbol synchronizer motivated by MAP estimation of timing er-
ror for NRZ signals has a structure whose I-arm nonlinearity is dependent on the symbol SNR. For large
symbol SNR, the nonlinearity should be hard limited, which results in the conventional implementation
of the DTTL. For small symbol SNR, the nonlinearity should be replaced by a linear device, resulting in
the linear DTTL (LDTTL). Comparing the mean-square tracking-jitter performances of the two imple-
mentations clearly indicates an advantage of the LDTTL over the conventional DTTL at small symbol
SNR. At large symbol SNR, the disadvantage of the LDTTL over the DTTL can be reduced by employing
a small window width in the quadrature arm.
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